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 [Use a separate Answer Book for each group] 
 

Group – A 
 

    (Answer any three questions)  [3×5] 
 

1. State De Moivre's theorem. Use it to prove that 
n
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 
   , where ,  are the roots of 

2x 2x 2 0   and n is a positive integer. [2+3] 
 

2. Show that the system of equations 
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 is consistent. Hence solve it. [5] 
 

3. Show that the determinant 
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 is a perfect square. [5] 

 

4. a) Prove that every strictly monotone function is injective. [2] 

 b) Use the ( - )   definition of limit to prove that 
x c
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

 . [3] 

 

5. A function ‘f’ is defined as 
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 Show that f is continuous at x = 0 and discontinuous at 
3

x
2

 . [5]  

 

Group – B 
 

    (Answer any four questions)  [4×2·5] 
 

6. Show that (A B) (A B ) A   where A, B are subsets of the universal set X and B  is the 

complement of B. 
 

7. Let f : A B be an onto mapping and S, T are subsets of B. Prove that 1 1 1f (S T) f (S) f (T)   . 
 

8. If f : A B and g : B C  be two mappings such that og f : A C is injective then show that f is 

injective. 
 



(2) 
 

9. Give an example of a mapping f :   ( = set of all integers), which is injective but not 

surjective. 
 

10. Let S {a b 5 :   a, b are rational numbers}. Show that S – {0} is a commutative group under 

multiplication. 
 

11. Prove that a group G is abelian if 1 1b a ba e    for all a,b G  where 'e' is the identity in G. 

 
 

———— × ———— 


